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ABSTRACT

Reliable forecasting is critical for early warning systems and adaptive drought
management. Most previous deep learning approaches focus solely on homo-
geneous regions and rely on single-structured data. This paper presents a hy-
brid neural architecture that integrates time series and static data, achieving state-
of-the-art performance on the DroughtED dataset. Our results illustrate the po-
tential of designing neural models for the treatment of heterogeneous data in
climate related tasks and present reliable prediction of USDM categories, an
expert-informed drought metric. Furthermore, this work validates the potential
of DroughtED for enabling location-agnostic training of deep learning models.
All the necessary code to reproduce the experiments is available at https:
//github.com/JulAgu/drought_forecasting_HM.

1 INTRODUCTION

Drought is a natural phenomenon characterized by a prolonged period of below-average precipita-
tion, which causes significant hydrological imbalances that negatively impact land resources (Reich-
huber et al., 2023). Droughts are typically classified into meteorological, agricultural, hydrological
and socioeconomic types (Humphreys, 1931; Dracup et al., 1980; Wilhite et al., 2007), reflect-
ing their broad impacts on different systems. As global warming intensifies, drought events’ fre-
quency, duration, and severity increase, exacerbating vulnerabilities. Given the multifaceted nature
of droughts and their effects across various spatial and temporal scales, reliable forecasting is crucial
for early warning systems and adaptive resources management. Effective predictions help mitigate
impacts on water supply, agriculture, ecosystems, and communities (Aghelpour et al., 2020).

Several indices are commonly used to assess drought conditions. Some well-known examples are the
Palmer Drought Severity Index (PDSI) (Palmer, 1968), the Standardized Precipitation Index (SPI)
(Mckee et al., 1993), and the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-
Serrano et al., 2010). These indices depend on meteorological variables to quantify deviations from
climatic norms. Alternatively, the U.S. Drought Monitor (USDM) categories provide a complete
evaluation by integrating hydrological, climatic and weather data with experts’ insights, capturing
a holistic view of drought impacts (Svoboda et al., 2002). We use the USDM categories as our
target variable for this study due to their comprehensive nature and integration into DroughtED
(Minixhofer et al., 2021).

Various authors have used machine learning to predict drought indices (Nandgude et al., 2023).
Traditionally, manual feature extraction has been used to feed classical machine learning algorithms
(Gaikwad et al., 2015). However, in recent years, there has been a significant shift toward deep learn-
ing approaches, which employ representation learning to automatically extract meaningful features
from data (Zheng & Casari, 2018). A considerable number of prior studies utilizing deep learning
techniques for drought prediction have predominantly focused on homogeneous regions (Dikshit
et al., 2022), and primarily employed uniform structured data, as images (Chaudhari et al., 2023) or
time series (Lalika et al., 2024; Vijaya Shetty et al., 2023) alone.
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This paper uses the DroughtED dataset introduced by Minixhofer et al. (2021) and presents a novel
modeling approach for drought forecasting with heterogeneous data. The contributions of this re-
search are threefold. (1) We introduce a neural architecture integrating time series and static data
through FFNNs, LSTMs, categorical embeddings, and an attention mechanism. We benchmark our
model against the dataset’s baselines. (2) We conduct an ablation study to assess the contribution of
each component within the proposed model. (3) We apply visualization techniques over latent states
to perform model introspection.

2 DATA

DroughtED is a large-scale dataset designed to forecast drought conditions in the United States by
integrating spatial and temporal features (Minixhofer et al., 2021).It includes historical meteoro-
logical time series, soil physical characteristics, and historical drought intensity information at the
county level. The meteorological data are sourced from The NASA Prediction Of Worlwide Energy
Resources (NASA POWER) project (Zhang et al., 2009), the soil properties are derived from the
Harmonized World Soil Database (Nachtergaele et al., 2008) and the drought intensity evaluations
are taken from the USDM (Svoboda et al., 2002).

Drought data are ordinal indicators measured locally. These indicators are then reduced to con-
tinuous average values and aggregated at the county level. The target values to be predicted are 6
continuous values at county level, corresponding to 6 consecutive weeks. We have data Y ∈ RN×6

where N corresponds to the number of pairs (county, timestamp) noted (c, t) in the following. To
predict these targets, we have static descriptors S ∈ RC×f , where f is the number of features de-
scribing the soil physical properties, and C the number of counties. Note that the descriptors will be
divided into categorical sd ∈ Rfd and numerical sn ∈ Rfn features below. The meteorological data
is represented as multivariate time series grouped in a tensor X ∈ RC×P×M : for each county, we
observe M = 20 different measurements over several years corresponding to P days.

We use all the descriptors from (Minixhofer et al., 2021): each local target to predict y ∈ R6 (6
weeks following t in county c) is associated with static descriptors sd and sn as well as a multivariate
time series x ∈ RT×M ′

. The period extracted from X corresponds to T = 180 days before the
timestamp t for the county c, while we take the M available measurements plus the M measurements
corresponding to the previous year over the same days to enable the model to build comparative
features, thus M ′ = 2M .

Counties are indexed using the FIPS (NIST, 1990) identifier. We use the train, validation and test
splits available in Kaggle1.

3 THE PROPOSED MODEL

Despite the flexibility of neural network libraries, handling data with heterogeneous structures is
still an open topic in deep learning (Guo et al., 2019; Kamm et al., 2023). We propose a hybrid
neural model that combines four modules: Long-Short-Term Memory Recurrent Neural Networks
(LSTM), Feedforward Neural Networks (FFNN), embedding layers and an attention mechanism.
Figure 1 shows the schema of the proposed model.

The categorical features sd are passed through the embedding layer E, which maps them to dense
vectors e ∈ Rz . Then, the dense representations of all categorical features are concatenated and
passed through a FFNN F that reduces its dimensionality, resulting in a vector e′ = F(E(sd)) ∈
Rz′

, where z′ < z. In parallel, the multivariate time series x is fed into the LSTM, yielding hidden
states at each time step t: {ht}t=1:T ∈ Rh×T . The hidden states are further processed by the
attention mechanism (detailed in Appendix A) to produce a context vector h̃ ∈ Rh. The numerical
features sn ∈ Rfn remain unchanged.

The final representation is obtained by concatenating the context vector h̃, the last hidden state hT ,
the continuous features sn, and the latent representation of the categorical features e′.

1https://www.kaggle.com/datasets/cdminix/us-drought-meteorological-data
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Table 1: Weekly results on the test set for the proposed model and the Minixhofer et al. (2021)
LSTM model.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Model MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1

LSTM 0.150 81.6 0.229 71.6 0.286 64.5 0.347 57.4 0.394 54.2 0.432 49.6
HM 0.126 82.2 0.169 74.7 0.209 68.6 0.244 64.0 0.269 58.6 0.294 51.0

The resulting vector is x′ = [h̃,hT , e
′, sn] ∈ R2h+z′+fn . This concatenated vector is then passed

through an MLP M, which outputs the prediction ŷ = M(x′) ∈ R6.

To the best of our knowledge, no prior effort has employed a neural architecture combining these
elements to predict USDM drought categories.

4 EXPERIMENTS AND RESULTS
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Figure 1: Schematic view of the proposed model.

Given the outlined framework, we conducted
some experiments to investigate the following
questions. a) How does the proposed hybrid ar-
chitecture perform compared to the best baseline
model established by Minixhofer et al. (2021)
regarding predictive performance and general-
ization? b) What is the relative contribution of
each architectural component to the overall per-
formance? c) Does the proposed model sustain
superior performance under a location-agnostic
training compared to location-specific training?
d) How do the attentional mechanism and latent
embeddings interact to shape the learned repre-
sentations within the model?

Hyperparameter optimization was conducted us-
ing Bayesian optimization via Optuna (Ak-
iba et al., 2019), with the AdamW optimizer
(Loshchilov & Hutter, 2019) and a cyclical learn-
ing rate schedule (Smith, 2017). We replicated

the baseline LSTM model following the publicly available code and guidelines provided by Minix-
hofer et al. (2021), and we present results from our implementation to ensure consistency. The
Transformer baseline model was excluded from the analysis since the LSTM demonstrated superior
performance. This decision aligns with the findings of Minixhofer et al. (2021) and is further sup-
ported by Zeng et al. (2023), which highlights the limitations of transformer-based approaches in
time series forecasting.

a) Predictive performance and generalization. After training the architecture with the optimal
set of hyperparameters, we observed that the proposed Hybrid Model (HM) consistently yields bet-
ter MAE and macro F1 scores over the weeks, as shown in Table 1. Over the entire test set, the
model shows relative improvements of 30% in the MAE, 9% in the F1 and 7% in the multi-class
weighted ROC-AUC score compared to the baseline LSTM. To estimate the expected prediction
error more accurately, we performed 5-fold cross-validation (Appendix D) and conducted a paired
t-test to evaluate whether HM significantly outperforms the LSTM. The results show a significant
improvement in MAE, RMSE, and F1, with p-values of 0.03, 0.04, and 0.02, respectively.

b) Ablation study. We evaluated the model under three ablation variables (Table 2). The best
performances are achieved when the attention mechanism was included. Additionally, the ablation
study founds that most of the knowledge is derived from meteorological data, which aligns with
previous findings (Minixhofer et al., 2021).
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Table 2: Results of the ablation study for the proposed model (HM).

Ablation settings

Static features Time series Attention mech. MAE RMSE F1

✓ ✓ ✓ 0.217 0.377 66.3
✓ ✓ 0.267 0.419 56.2
✓ 0.271 0.420 56.6

✓ ✓ 0.280 0.427 57.1
✓ 0.755 0.920 21.2

c) Location-agnostic vs location-specific training. As in the experiment carried out by Minix-
hofer et al. (2021) for the baseline LSTM, we consider the same 3 states obtained at random (Iowa,
Montana and Oklahoma) and trained HM on each state alone and on all training data (Appendix F).
The model trained on data from all counties —location-agnostic— demonstrated an average relative
improvement of 9.3%. This indicates that when using HM, location-agnostic training outperforms
location-specific training. In comparison, Minixhofer et al. (2021) reported an average relative im-
provement of 4.6% for the baseline LSTM.

d) Model introspection. We conduct a qualitative analysis of the model’s intermediate represen-
tations. By using t-SNE dimensionality reduction (with a perplexity = 100 and 1000 iterations)
(van der Maaten & Hinton, 2008), we examined how observations cluster according to each cate-
gorical feature. Our findings indicate that the embeddings closely align with the categories of the
“Nutrient availability” feature (see Figure 2a). We consider this a favorable outcome, as previous
work have found that droughts significantly influence the presence and accessibility of nutrients in
the soil (He & Dijkstra, 2014; Bista et al., 2018).

In relation to the attentional weights, we processed the test set through the model. Then, we plotted
the average attention weight for each day, along with a 95% confidence interval (Figure 2b). Atten-
tion is primarily concentrated on the first 10 days, with additional focus on the last 30 days of the
look-back window.

Nutrient
availability
scores

1

2

3

4

5

6

7

(a) t-SNE colored by “Nutrient availability”.
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(b) Mean attention weights on the test set.

Figure 2: t-SNE over the embeddings and mean attention weights curve.

5 CONCLUSION AND FUTURE WORK

We present a hybrid neural architecture and validate its effectiveness through empirical evaluation
on the DroughtED dataset, achieving state-of-the-art performance in forecasting USDM drought
categories.

Future improvements to the proposed architecture will prioritize refining the attention mechanism
through two strategies: (1) calibrating attention weights sharpness via a learnable softmax temper-
ature parameter and (2) leveraging expert-annotated labels to supervise attention training through
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an auxiliary loss, mirroring the expert-guided process behind USDM categories. Beyond immedi-
ate performance gains, the architecture’s modular design creates a flexible framework for extreme
weather events forecasting and other tasks depending on static and temporal data interaction.
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A DETAIL ON THE ATTENTION MECHANISM

Since the proposed model is designed as a flexible framework, a simple implementation of the
attention mechanism is used. This implementation resembles Bahdanau attention (Bahdanau et al.,
2014). While their implementation aims to calculate the alignment scores between the sequences
of an encoder and a decoder, the proposed approach focuses on differentially weighting the hidden
states from the LSTM.

Given the set of hidden states H = [h1, h2, ..., hT ] at the output of the LSTM, we calculate the
scores using a linear layer:

st = Wht + b (1)

where W and b are learnable matrix of weights and bias.

Then we calculate the attention weights by passing the scores through a softmax function:

αt = softmax(st) =
est∑T
i=1 e

si
(2)

the context vector h̃ is computed as the weighted sum of the LSTM hidden states, using the attention
weights.

h̃ =

T∑
t=1

αtht (3)

B SELECTED HYPERPARAMETERS FOR EACH MODEL

Table 3: Hyperparameters for the baseline models (Minixhofer et al., 2021) and for the proposed
Hybrid Model (HM). Where applicable, the notation remains consistent with that used in the body
of the article.

Hyperparameter Notation LSTM Transformer Hybrid Model (HM)

LSTM or Transformer Number of layers 2 4 2
LSTM Hidden size h 512 512 490
Initial embedding size z - 256 27
Reduced embedding size (after FFNN) z′ - - 6
Final MLP number of layers - - 2
FFNN inner hidden size - 4096 -
Attention Heads - 2 -

Batch size 128 128 128
Dropout probability 0.1 0.1 0.1
Embeddings dropout probability - - 0.4
Weight Decay 0.01 0.01 0.01
Learning rate 7e-5 7e-5 7e-5
Number of epochs 7 7 9
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C RESULTS ON THE TEST SET

Table 4: Results on the test set for the LSTM baseline and the proposed model.

Model MAE RMSE F1 ROC-AUC

LSTM 0.306 0.478 61.9 80.6
HM 0.218 0.378 67.3 85.9

D 5-FOLDS CV

Table 5: Extensive results of the 5-fold Cross-validation for the baseline LSTM and the proposed
model.

LSTM HM

Fold MAE RMSE F1 MAE RMSE F1

1 0.347 0.553 58.34 0.244 0.433 60.22
2 0.365 0.570 42.79 0.302 0.519 59.67
3 0.272 0.444 66.22 0.254 0.404 75.22
4 0.332 0.548 44.82 0.266 0.433 59.84
5 0.310 0.504 63.88 0.299 0.502 71.06

Table 6: Mean and standard deviation for each metric on the 5-fold Cross-validation results.

Model MAE (x ± σ) RMSE (x ± σ) F1 (x ± σ)

LSTM 0.325 ± 0.036 0.524 ± 0.051 55.2 ± 0.108
HM 0.273 ± 0.026 0.458 ± 0.050 65.2 ± 0.074

E DETAIL ON THE ABLATION STUDY

Table 7: Weekly results of the ablation study on the test set.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Model MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1

HM 0.126 82.2 0.169 74.7 0.209 68.6 0.244 64.0 0.269 58.6 0.294 51.0
TS+Att 0.134 65.9 0.189 62.3 0.250 56.3 0.307 51.2 0.360 51.6 0.361 50.8
TS 0.136 61.9 0.192 62.3 0.253 56.3 0.312 56.4 0.364 51.6 0.368 50.8
SF+TS 0.144 73.9 0.203 62.3 0.262 56.3 0.320 51.2 0.374 49.3 0.375 50.8
SF 0.779 20.4 0.746 22.7 0.752 25.3 0.713 18.9 0.754 19.5 0.787 17.0
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F LOCATION-AGNOSTING VS LOCATION-SPECIFIC TRAINING EXPERIMENT

Table 8: Weekly results for the HM on county vs national training data. The selected counties are
Iowa (IA), Montana (MT) and Oklahoma (OK).

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Train Eval. MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1

IA IA 0.101 86.7 0.179 67.7 0.214 69.5 0.287 63.5 0.298 60.9 0.272 59.4
MT MT 0.203 52.3 0.314 49.1 0.339 50.9 0.341 38.6 0.377 37.0 0.407 35.9
OK OK 0.156 75.8 0.230 59.7 0.269 56.9 0.327 61.6 0.352 59.1 0.387 57.8

IA 0.086 89.3 0.122 79.2 0.151 78.4 0.189 71.9 0.214 73.9 0.235 66.4
all MT 0.144 59.5 0.168 52.9 0.178 50.0 0.209 45.5 0.237 44.4 0.265 38.6

OK 0.096 83.1 0.160 75.8 0.196 77.9 0.209 77.5 0.260 73.5 0.298 66.3

Table 9: Results on the test set using county vs national training data.

Train Eval. MAE RMSE F1

IA IA 0.201 0.383 73.8
MT MT 0.301 0.354 46.7
OK OK 0.278 0.402 63.1

IA 0.166 0.315 76.6
all MT 0.200 0.320 48.2

OK 0.218 0.378 67.3
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